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measure of the precision of theory and experi- 
ment. 

This work will be described in detail elsewhere 
with an assessment of research areas opened up by 
this significant development. The same experi- 
mental principle may be applied to creep strain 
rather than creep-strain rate. The power of the 
technique is not limited to linear viscoelastic solids 
but to any slow rate process governed by an 
analogous first order differential equation. 
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A calculation of  the surface energy o f  
~-rhombohedral boron 

In a preceding investigation, Vega et al. [1] ap- 
plied the Griffith criterion for the fracture of 
brittle materials to tensile failure in boron fibres. 
The application was restricted to fractures initiated 
at a particular type of imperfections, the geometry 
of which was observed to be similar to that of  a 
Gfiffith crack, i.e. the proximate voids existing in 
the vicinity of the core-mantle interface. The ap- 
plication of the Griffith equation permitted the 
authors to estimate experimentally the surface 
energy 7 for boron with a Young's modulus of 
4.4 x 10 s N m m  -2 as calculated by Talley [2]. 
The values of the surface energy obtained were 
2.77 to 6.43 J m  -2, which is of the same order as 
available values in the literature for bulk tungsten 
[3, 4] .  As neither experimentally measured nor 
theoretically calculated values of 7 have earlier been 
reported, it is the purpose of the present work to 
calculate 7 by some simple fundamental consider- 
ations. 

Elemental boron can exist in three different 
allotropic forms: a-rhombohedral, tetragonal and 
/3-rhombohedral. The structure of  boron in fibres 
has most commonly been referred to as amorphous 
[ 5 - 7 ] .  Others have interpreted the amorphousness 
of  boron in terms of a fine grained polycrystalline 
structure with crystallite sizes of 20 to 30.~ [ 8 -  
10]. By now there is some agreement on the 
microcrystal!ine nature, but on the other hand, it 
has not yet been possible to determine the exact 
crystal structure of the microcrystallites. 
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Considering the uncertainty in crystal structure, 
and the fact that tetragonal and/3-rhombohedral 
boron are relatively more complicated structures, 
we have decided to make our calculations on the 
simpler ~-rhombohedral allotrope. 

A complete description of the three allotropic 
forms of boron can be found in [11] and [12]. 
Data for ~-rhombohedral boron have been taken 
from a textbook by Adams [11]. Only the most 
relevant data will be summarized here. 

All three allotropic forms are characterized by 
lattice arrangements of Bt2 icosahedra. The Bt2 
icosahedral unit is shown in Fig. 1. The a-rhombo- 
hedral structure consists of nearly regular icosa- 
hedra in a slightly deformed cubic close packing. 
The rhombohedral unit cell can be more con- 
veniently described in terms of the related hexag- 
onal cell with a = 4.908 A and c = 12.567 A and 
containing three icosahedra. 

Figure 1 The B~2 icosahedral unit in boron structures. 
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Figure 2 The basal plane in the c~-rhombohedral structure 
of boron. 

The bonds within the icosahedral units range 
from 1.73 to 1.79A. The average bond, the so- 
called intraicosahedral bond, is about 1.76 A. Of a 
total of 36 valence electrons available per icosa- 
hedron, 26 are used by the intraicosahedral bonds 
and the remaining 10 for the binding between 
icosahedra. In the basal plane, the icosahedra are 
arranged in a close-packed array with nearest 
neighbour distance 4.908/~ (Fig. 2). The icosahedra 
are bonded by means of delta bonds, in which two 
electrons are shared between three atoms in the 
vertices of an equilateral triangle. Each icosahedron 
utilizes 4 electrons to be shared among the six 
delta bonds for the binding in the basal plane. Due 
to this electron defficiency, the bonds are rela- 
tively long; 2.03 A. 

Finally, the basal planes are stacked one above 
the other. The corresponding intericosahedral dis- 
tance centre-to-centre is 5.056 A. Each icosahedron 
is bonded between the planes by six bonds, three 
on the top and three on the bottom, which utilize 
the remaining 6 electrons. These bonds have a 
length of 1.71 A. 

We now consider the relative strengths of the 
three different bond types of a-rhombohedral 
boron. Their absolute strengths will subsequently 
be related to the energy of sublimation of boron, 
for which experimental values are available. The 
physical basis of our analysis is given by the 
Hellmann-Feynman theorem [13, 14], in the 
form stating that the total force acting on an 
atomic nucleus in a cluster of atoms (in a stable 
state) may be calculated as the classical electrostatic 
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force exerted by all other nuclei and all electron 
density in the cluster. The force on nucleus i is 
defined as 

Fi = - -  V I E ( . . .  ri .  . .) ,  (1) 

where E is the total system energy as a function of 
all nuclear co-ordinates ri. The Hellmann-Feynman 
theorem expresses the remarkable fact that all 
terms of V i E ,  except the electrostatic term, exactly 
cancel when the system is in a stable state. 

The binding energy of two atoms (or clusters of 
atoms) is usually calculated as a difference in en- 
ergy eigenvalues. The Hellmann-Feynman theorem 
supplies us with an alternative approach; the bind- 
ing energy can be found by integrating the electro- 
static forces (acting on the nuclei of one part) over 
the separation distance, as the two parts are 
brought together from infinity to equilibrium dis- 
tance. This approach has been studied by several 
workers, e.g. Epstein e t  al. [15], who in 1967 in- 
vestigated the detailed conditions of validity of 
such calculations, and Slater [16], who in 1972 
discussed the Xa-application of the theorem to 
molecular and solid state theory. Feynman [14] 
also demonstrated that a directed covalent bond 
essentially consists of the attraction between each 
nucleus and a raised density of valence electrons in 
the region of the bond; thus the valence electrons 
serve as directed links between the nuclei. 

In view of the fact that the bond energy, in 
point of principle, may be derived from purely 
electrostatic interactions, we make two simplifying 
assumptions: 

(i) The energy of a covalent bond is directly 
proportional to the valence density in the region 
of the bond, and this density, in its turn, is directly 
proportional to the number of electrons partici- 
pating in the bond. 

(ii) The energy of a covalent bond is inversely 
proportional to the length of the bond 

It should be emphasized that the approxi- 
mations (i) and (ii) are too crude to permit a calcu- 
lation of the absolute bond energies. They merely 
supply a general idea of the relative strengths of 
the bonds. The absolute bond energies are then 
determined from an experimental value of the sub- 
limation energy. The assumption (ii) is of minor 
importance to the relative strengths, since the 
bond lengths do not differ much in ~-rhombo- 
hedral boron. 



J O U R N A L  OF MATERIALS SCIENCE 12 (1977 ) .  LETTERS 

Some of the interatomic bonds in boron are 
said to be of normal strength in the sense that two 
electrons participate in each bond, while other 
bonds are of less than normal strength since less 
than two electrons per bond participate. The 
bonds between neighbouring atoms in an icosa- 
hedron (here called I-bonds) are of less than normal 
strength, since only 26 electrons are shared among 
the 30 I-bonds of the icosahedron. Thus, according 
to the assumption (i) above, each I-bond has 26/ 
60 = 43% of normal strength. A bond between an 
atom in one icosahedron and a neighbouring atom 
in another icosahedron in the same basal plane 
(here called D-bond) has 8/24 = 33% of normal 
strength, since 8 electrons (4 from the observed 
icosahedron and 4 from neighbouring icosahedra) 
are shared among the 12 D-bonds of one icosa- 
hedron. The bond between an atom in one icosa- 
hedron and a neigbouring atom in another icosa- 
hedron contained in an adjacent basal plane (here 
called N-bond) is of  normal strength, since 12 elec- 
trons (6 from the observed icosahedron and 6 
from neighbouring ones) are shared among the 6 
N-bonds of one icosahedron. 

If  the energy on one I-, D- or N-bond is denomi- 
nated ei, eo or eN, respectively, and the energy of 
sublimation per atom is Es, then the energy of sub- 
limation per icosahedron (12 atoms) may be 
expressed as 

12Es = 30ei + 12 2 + 6 2 (2) 

Note that only half of the D- and N-bond energies 
may be ascribed to the observed icosahedron. If, 
for a moment, we assume that all bond lengths are 
equal, the relative bond energies are given by 

ei = 26/60eN, eo = 8/24eN. (3) 

These expressions inserted into Equation 2, yield 

eN = 2/3Es (4) 

If the differences in bond lengths are taken into 
account, according to assumption (ii) above ei ahd 
eD in Equation 3 must be multiplied by the factors 
1.71/1.76 and 1.7112.03 respectively, which yields 
a slightly altered value 

eN = 0.69Es. (5) 

At this point it is interesting to observe that the 

intraicosahedral fraction of the cohesive energy 
(i.e. 30 ei/12Es) is large (73%) compared with the 
intericosahedral fraction (27%). Thus it is pertinent 
to assume that a crack normally propagates bet- 
ween the icosahedra, and not through them. 

If cleavage occurs between two basal planes in 
a-rhombohedral boron, three N-bonds are ruptured 
per surface icosahedron. If  each surface icosahedron 
occupies an area A, the cleavage energy per unit 
area is 

Edeav = 3e___N = 3 x 0.69 E-As (6) 
A A" 

The corresponding surface energy is 

1 3' = ~ E ~ . v .  (7) 

E s for boron is 5.68 eV per atom [17], andA for a 
basal plane in a-rhombohedral boron is 20.86 A 2 . 
From Equation 6 and 7 we finally get 

7 = 0 .282eVA -2 = 4 . 5 2 J m  -2 (8) 

This 7 value lies within the range 2.77 to 6.43 J m -2 , 
as experimentally obtained for boron fibres by 
Vega et al. [ 1 ]. 

In a preliminary investigation, Vega estimated 
the difference in surface energies between the 
three allotropes of boron, using the simple Orowan 
function (fitted to experimental values of the 
Young's modulus and the interplanar distance) for 
the force between two atomic planes. These esti- 
mates indicate that the 3' values differ by less 
than 5%. It then seems reasonable to assume that 
the 3' values for tetragonal and /3-rhombohedral 
boron cannot differ much from the value calcu- 
lated for a-rhombohedral boron by the present 
method. 

References 
1. JORGE VEGA-BOGGIO, JAN-AKE SCHWEITZ and 

OLOF VINGSBO, J. Mater. Sci. 
2. C.P. TALLEY, J. Appl. Phys. 30 (1959) 1114. 
3. A. KELLY, "Strong solids" (Clarendon Press, 

Oxford, 1966). 
4. J-A SCHWEITZ and O. VINGSBO, Mater. Sci. Eng. 

8 (1971) 275. 
5. C. P. TALLEY, L. LINE and Q. OVERMAN in 

"Boron Synthesis Structure and Properties", Edited 
by I. KOHN, W. NYE and G. GAULE (Plenum Press, 
New York, 1960) p. 94. 

1925 



J O U R N A L  OF MATERIALS SCIENCE 12 (1977 ) .  LETTERS 

6. F. GALASSO, D. KNEBL and W. TICE, J. AppL 
Phys. 38 (1967) 414. 

7. F. E. WAWNER and P. H. LEWIS, Appl. Phys. 
Letters 9 (1966) 89. 

8. D. F. LINDQUIST, M. L. HAMMOND and R. H. 
BRAGG, O r. Appl. Phys. 39 (1968) 5152. 

9. H.M. OTTE and H. A. LIPSITT, Phys. Star. Sol. 13 
(1966) 439. 

10. J. S. GILLESPIE JUN., J. Am. Chem. Soc. 88 
(1966) 2423. 

11. A. E. NEWKIRK in "Boron, Metallo-Boron Com- 
pounds and Boranes, Eidted by ROY M. ADAMS 
(John Wiley and Sons, New York, 1964) p. 256. 

12. E. L. MUETTERTIES, "The Chemistry of Boron 
and its Compounds" (Wiley, New York, 1967) p. 38. 

13. H. HELLMANN, "Einfiihrung in die Quanfenchemie" 
(Deticke, Leipzig, Germany, 1937). 

14. R.P. FEYMAN, Phys. Rev. 56 (1939) 340. 
15. S .T.  EPSTEIN, A. C. HURLEY, R. E. WYATT and 

R. G. PARR, J. Chem. Phys. 47 (1967) 1275. 
16. J .C. SLATER, J. Chem. Phys. 57 (2972) 2389. 
17. R. L. PAULE and J. L. MARGRAVE, J. Phys. Chem 

67 (1963) 1368. 

Received 31 December 19 76 
and accepted 8 February 1977. 

JORGE VEGA-BOGGIO 
JAN-AKE SCHWEITZ 

Institute of  Technology, 
Uppsala University, 

Box 534, 
S-751 21 Uppsala, 

S WEDEN. 

1926 


